
Xeenon Credit Ledger Audit

Table of Contents

1 Xeenon Credit Ledger Audit
1.1 Overview

1.1.1 Objectives

1.1.2 Scope

I High-Risk

2 Incorrect Credit Accounting for Withdrawals
2.0.1 Example:

2.1 Recommendation

II Medium-Risk

3 Credits Use Low Decimals
3.1 Recommendation

III Low-Risk

4 The Use of Percentage Rate is Misleading
4.1 Recommendation

5 Percentage Fees Are Not Accounted For in Deposits/Withdrawals
5.1 Recommendation

IV Informational

6 Risks of Centralization
6.1 Recommendation

7 Conform Events
7.0.1 Suggestion:

7.0.2 Suggestion:

8 Declare Certain Variables Public
8.0.1 CreditLedger.sol:

8.1 Recommendation

9 Emit
9.1 Recommendation

9.2 Recommendation

10 Unable to Transfer Without Specifying A Fee Component
10.1 Recommendation

V Optimization

11 AccessControl tracks duplicate state
11.1 Recommendation

12 Declare Non-Changing Variable
12.1 Recommendation

13 Simplify Credit Rounding
13.1 Recommendation

13.2 Recommendation

14 Disclaimer

1 Xeenon Credit Ledger Audit

Perfect Abstractions conducted a smart contract audit of GravitonINC/xeenon from Sep 30 2022 until Oct 5 2022.
The
audit is performed on commit GravitonINC/xeenon/tree/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6.

The client has updated the repository after receiving the report in commit 9d05872.

Auditors:

Kurt Willis

Audit report reviewed by Nick Mudge.

1.1 Overview

Xeenon is a protocol designed to support the transfer of credits between users for a content-creator platform.
Most of
the contract's functionality is handled by an automated backend given special access-control roles.

1.1.1 Objectives

Uncover exploitable mechanics

Validate protocol invariants

Inspect protocol design choices

Present optimizations

1.1.2 Scope

The following files are in the scope of the audit:

AccessControl.sol

Admin.sol

CreditLedger.sol

Xeenon.sol

https://www.perfectabstractions.com/
https://github.com/GravitonINC/xeenon
https://github.com/GravitonINC/xeenon/tree/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6
https://github.com/GravitonINC/xeenon/commit/9d058724cf849ebe1ee1af9ed50b8595c8723056
https://github.com/GravitonINC/xeenon/blob/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6/packages/contracts/contracts/AccessControl.sol
https://github.com/GravitonINC/xeenon/blob/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6/packages/contracts/contracts/Admin.sol
https://github.com/GravitonINC/xeenon/blob/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6/packages/contracts/contracts/CreditLedger.sol
https://github.com/GravitonINC/xeenon/blob/c349c5e9f7e27b0c5ddde17ceb3a5103bc0115f6/packages/contracts/contracts/Xeenon.sol

I. High-Risk

2 Incorrect Credit Accounting for Withdrawals

Fixed as per recommendation.

In Xeenon.sol, protocol fees are not applied to user credits and incorrectly added as protocol revenue.

The withdrawFee is deducted from the user's credit amount before being converted to the underlying asset and is
added as protocol revenue.
The user receives the underlying asset calculated by: convertFromCredits(_creditAmount
- withdrawFee) .
The amount deducted from the user's balance, however, is also _creditAmount - withdrawFee ,
whereas it should be the full _creditAmount . This means that the user is awarded the same amount in credits as is
deducted from their balance without applying any fees.
The non-applied fees are now incorrectly added as protocol
revenue.

The consequence of this error is that the protocol's internal accounting will be incorrect.
The problem is illustrated with
an example scenario.

2.0.1 Example:

Alice deposits 10$ which gets converted to 1000 credits (assuming no deposit fees)

The protocol's withdrawal fees are set to a fixed amount of 5 credits

Alice withdraws the 1000 credits and has 1000 - 5 = 995 credits deducted from her credit balance

Alice has received 9.95$ and is left with 5 credits under her balance in the protocol

The protocol has added 5 credits as protocol revenue

The total amount of credits now is 995 + 5 + 5 = 1005 while it should only be 1000 credits

High Risk

Fixed

function withdraw(uint256 _creditAmount) external {

uint256 withdrawFee = feeComponents["withdraw"].value;

// ...

if (withdrawFee > 0) {

_addRevenue(withdrawFee);

_removeCredits(msg.sender, _creditAmount - withdrawFee);

acceptedToken.safeTransfer(

msg.sender,

convertFromCredits(_creditAmount - withdrawFee)

);

}

// ...

}

Now either, if Alice withdraws more, the protocol fees will not be able to be withdrawn

or, if the protocol fees are withdrawn first, Alice will not be able to withdraw the left-over credits

The impact/importance of this issue is considered high, as the mis-calculation is effective immediately and cannot be
circumvented by the protocol
as soon as withdrawal fees are enabled.

2.1 Recommendation

Remove the full amount _creditAmount from the user's balance, without subtracting the fees:

function withdraw(uint256 _creditAmount) external {

uint256 withdrawFee = feeComponents["withdraw"].value;

// ...

if (withdrawFee > 0) {

_addRevenue(withdrawFee);

_removeCredits(msg.sender, _creditAmount);

acceptedToken.safeTransfer(

msg.sender,

convertFromCredits(_creditAmount - withdrawFee)

);

}

// ...

}

II. Medium-Risk

3 Credits Use Low Decimals

Client: "Business decision to keep 1 stable coin = 100 credits."

Due to the nature of the credits conversion, any credit transfer/deposit/withdrawal or fee calculation is performed with
limited precision.

CreditLedger.sol defines creditsConversion = 1e16 . An ERC20 token with 18 decimals will get divided by this
conversion rate.
Due to this, credits are effectively handled as tokens with 2 decimals (0.01) lending them a limited
precision compared to native ERC20s.

This might be intentional as to result in a favorable fee rounding on withdrawals/deposits,
yet this design choice could
heavily limit the functioning of the protocol.
As the system is designed to transfer credits between content producers
and consumers, ensuring a fair payment to any user in the system could mean that sub-cent values are required.

A quick check on related streaming platforms shows payments of around 0.001-0.004$ per stream. Further, in this
case, the restriction of a minimum of 1 credit per percentage fee could be a bad design choice, as this would mean a
minimum multiple of the creator fee to be taxed.

Increasing the decimal precision should come at no additional computational costs while still allowing for favorable
rounding mechanics. In fact, keeping it at the same conventional 18 decimals would remove the need for conversion,
reducing computation and complexity.

3.1 Recommendation

Medium Risk

function convertToCredits(uint256 _stableCoins)

public

pure

returns (uint256)

{

return _stableCoins / creditsConversion;

}

function _calcPercentageRateFee(uint256 _amount, uint256 _feePercentage)

private

pure

returns (uint256, uint256)

{

// ...

} else if (fee == 0) {

// Xeenon will take a minimum fee of 1 credit for the transaction

fee = 1;

}

}

Do not perform a conversion of credits by dividing the token amount by 1e16 . In this case, the backend of the protocol
would need to be adjusted to count 1e16 credits (0.01$) as 1 credit compared to the current implementation.

III. Low-Risk

4 The Use of Percentage Rate is Misleading

Client: "Keeping the percentage naming."

In the contract Xeenon.sol the word "percentage rate" is used.
This is misleading because points per thousandths
(per mille) are used.

Furthermore, when adding a fee component, there is no indication of scale (i.e. 18 or 2 decimals, percentage or
permillage).

4.1 Recommendation

Rename the fee parameter of _calcPercentageRateFee() from _feePercentage to _feePerMillage .

Add natspec comments that further explain the parameters of functions. These comments can be utilized on block
explorers, such as etherscan.

Low Risk

function _calcPercentageRateFee(uint256 _amount, uint256 _feePercentage) {

// ...

uint256 fee = (_amount * _feePercentage) / 1000;

}

function addFeeComponent(

string memory _key,

uint128 _code,

uint128 _value

) {

// ...

}

5 Percentage Fees Are Not Accounted For in
Deposits/Withdrawals

The client has implemented an update that prevents the fee component code of 'deposit' and 'withdraw' from being
changed.

Deposits and withdrawals do not take percentage fees into account and operate under the assumption of always
receiving fixed rate fees.
The current contract does not have the ability to adapt for a change in the fee type.

If the deposit/withdraw fee component type is updated at some point in the future, this could have adverse effects as
there are no safe-guards to prevent such a change.

5.1 Recommendation

Add code in the addFeeComponent function that prevents it from changing the fee type for "deposit" or "withdraw".

Or update deposit() and withdraw() functions to handle percentage fees (in a similar way that _transfer does).

Low Risk

Fixed

function deposit(uint256 _amount) external {

uint256 depositFee = feeComponents["deposit"].value;

// ...

uint256 creditAmount = convertToCredits(_amount);

require(creditAmount > depositFee, "Can't deposit less than fee.");

}

IV. Informational

6 Risks of Centralization

Client: "Actions to secure owner wallet will be taken."

The contract "owner" has maximum privileges.
In particular, the owner is able to:

set the treasury receiver treasuryReceiver (fee receiver) (as the owner)

add/change fee components (as the owner)

set the protocol admin admin (as the owner)

grant the TRANSFER role (as the admin)

transfer funds on behalf of the user (via TRANSFER role)

withdraw funds to the treasuryReceiver (as the admin)

Furthermore, it is possible to set a fee component to a 100% fee.

The owner has the full power to access any funds of the protocol, including any user funds (by setting a 100% fee and
invoking a transfer). A compromised owner wallet could lead to all of the user funds to be withheld by the smart
contract or transferred out to a malicious actor.

The security of the protocol depends on the security of the owner address.

If the owner address does not have sufficient security it could be compromised in a number of ways. Here are some
examples:

Targeted phishing attacks

Accidental leaks (e.g. by committing a private key)

Hacks or a compromised computer with the private key

A maliciously acting insider

6.1 Recommendation

If not already done, we recommend taking steps to secure the owner address and/or mitigate its power.

Here are some ways to secure the owner address or mitigate its power:

Set the owner address to a multisignature contract that requires multiple approvals from different people.

Use time-locks and/or on-chain governance for sensitive actions (withdrawals, setting a new admin/owner).

Informational

function _addPercentageRate(string memory _key, uint128 _value) private {

require(_value <= 1000, "_value can't be more than 1000.");

// ...

}

Use reasonable limits on Fees for user fund protection.

Replace unlimited credit usage by admin roles with limited user credit approvals through on-chain signature
verification (see EIP-2612 permits).

https://eips.ethereum.org/EIPS/eip-2612

7 Conform Events

The events now track the credit receiver as address to .

7.1 Transfer event

The declared Transfer event tracks the fee , and credit balances fromCreditsAfter and toCreditsAfter , but does
not indicate who is the credit receiver and what value is transferred.

7.1.1 Suggestion:

Add address to , the credits that are being transferred and the included fee .

Though the exact event should depend on the protocol's needs and backend design.

7.2 Deposit event

The Deposit event emits the value of _amount converted without fees.
In its current form, the event does not give
any information on how much credit was added and how high the fee was.

Informational

Fixed

event Transfer(

address indexed from,

uint256 fee,

uint256 fromCreditsAfter,

uint256 toCreditsAfter

);

event TransferCredits(

address indexed from,

address indexed to,

uint256 credits,

uint256 fee

);

7.2.1 Suggestion:

In this case, depositFee is deducted from creditAmount in the field credits .

_addCredits(msg.sender, creditAmount - depositFee);

// ...

emit Deposit(

msg.sender,

convertToCredits(_amount),

creditBalance(msg.sender)

);

event Deposit(

address indexed from,

uint256 credits,

uint256 fee

);

emit Deposit(

msg.sender,

creditAmount - depositFee,

depositFee

);

8 Declare Certain Variables Public

The functions getAccumulatedRevenue() and getTreasuryReceiver() were added. Declaring these functions as view
makes the data they return more difficult to access by addresses that are not the owner of the contract but the data can
still be accesses by others because by design of Ethereum the data stored in contracts is publicly accessible.

8.0.1 CreditLedger.sol:

totalRevenue and treasuryReceiver in CreditLedger.sol are internal variables. Their values cannot be access easily
outside the contract.

8.1 Recommendation

Declare totalRevenue and treasuryReceiver variables public or add getter functions for them.

Informational

Fixed

uint256 public totalRevenue;

address public treasuryReceiver;

9 Emit Frozen event

The client has added an event WalletFreeze(address wallet) to track individual wallets being frozen, but has decided
to not emit events for a global and individual unfreeze.

freezeWithdraw() emits an event GlobalFreeze() . To be able to track any global unfreeze, unFreezeWithdraw()
could also emit an event GlobalUnFreeze() .

9.1 Recommendation

Further, a Freeze(address wallet) and UnFreeze(address wallet) event could be emitted to track frozen and
unfrozen user accounts.

9.2 Recommendation

Informational

Fixed

function freezeWithdraw() external onlyAdmin {

withdrawFrozen = true;

emit GlobalFreeze();

}

function unFreezeWithdraw() external onlyOwner {

withdrawFrozen = false;

}

function unFreezeWithdraw() external onlyOwner {

withdrawFrozen = false;

emit GlobalUnFreeze(); // add this event

}

function _freezeWalletWithdraw(address _wallet) private {

frozenWithdrawWallets[_wallet] = true;

}

function unFreezeWalletWithdraw(address _wallet) external onlyRole(FREEZE) {

require(frozenWithdrawWallets[_wallet], "Wallet was not frozen.");

delete frozenWithdrawWallets[_wallet];

}

function _freezeWalletWithdraw(address _wallet) private {

frozenWithdrawWallets[_wallet] = true;

emit Freeze(_wallet); // add this event

}

function unFreezeWalletWithdraw(address _wallet) external onlyRole(FREEZE) {

require(frozenWithdrawWallets[_wallet], "Wallet was not frozen.");

delete frozenWithdrawWallets[_wallet];

emit UnFreeze(_wallet); // add this event

}

10 Unable to Transfer Without Specifying A Fee Component

Client: "Transfer events are made by the backend, if we make a mistake we don’t want the
transfer to go through
without fees, this needs to be detected and actions should be taken. If
we want a fee to be 0 then we can add a
feeComponent with key: ‘fee’ that has a value of 0."

In order to successfully transfer credits, a fee component must be specified.
Even when no fee is desired for a transfer,
the second require statement means that a fee component must be included, even if it is 0, and cannot be bypassed.

10.1 Recommendation

Allowing for more flexibility, the function could also be allowed to operate without a fee component. This could be
achieved by removing the second require check, or by allowing a specific key (0x0000...) to signal that no fees are
applied.

Informational

function _transfer(

address _from,

address _to,

uint256 _creditAmount,

string calldata _key

) private {

require(creditBalance(_from) >= _creditAmount, "Not enough credits.");

require(feeComponents[_key].code != 0, "Key does not exist.");

// ...

}

V. Optimization

11 AccessControl tracks duplicate state

The client has added a function to get all members as an array via the function function getRoleAccounts(bytes32
_role) external view onlyAdmin returns (address[] memory) . Declaring this function as view makes the data they
return more difficult to access by addresses that are not the owner of the contract but the data can still be accessed by
others because by design of Ethereum the data stored in contracts is publicly accessible.

AccessControl currently keeps track of members twice (in the mappings roles and members).

11.1 Recommendation

Simply tracking

is sufficient.

Checking whether an address is contained in the EnumerableSet.AddressSet for a specific role can be checked via
the library function .contains .

Furthermore, a getter function could be written to access all enumerated values members[_role].values() for
convenience.

Optimization

struct RoleData {

mapping(address => bool) members;

}

mapping(bytes32 => RoleData) private roles;

mapping(bytes32 => EnumerableSet.AddressSet) private members;

mapping(bytes32 => EnumerableSet.AddressSet) private members;

function hasRole(bytes32 _role, address _account) public view virtual override returns (bool)

{

return members[_role].contains(_account);

}

12 Declare Non-Changing Variable immutable

Implemented according to recommendation.

acceptedToken is defined as a state variable and thus read from storage every time it is accessed. As there is no
possibility of changing this variable, acceptedToken can be defined as immutable .

The variable then becomes part of the contract code and saves the cost of an SLOAD operation (2100 gas) when it is
read.

12.1 Recommendation

Add the immutable key-word to the variable acceptedToken .

Optimization

Fixed

// Stable coin used

IERC20 public acceptedToken;

// Stable coin used

IERC20 public immutable acceptedToken;

13 Simplify Credit Rounding

Implemented according to recommendation.

In _calcPercentageRateFee credits are rounded up for a .5 cent remainder and above.

13.1 Recommendation

The code can be simplified to the following to allow for rounded-up values.

Optimization

Fixed

uint256 fee = (_amount * _feePercentage) / 1000;

uint256 remainder = (_amount * _feePercentage) % 1000;

// subcent rounding so its fair to Xeenon

if (remainder > 499) {

// If the remainder was .5 of a cent or greater

fee = fee + 1;

} else if (fee == 0) {

// Xeenon will take a minimum fee of 1 credit for the transaction

fee = 1;

}

uint256 fee = (_amount * _feePercentage + 500) / 1000;

if (fee == 0) {

fee = 1;

}

14 feeComponents Key Could Be Declared Bytes32

Implemented according to recommendation.

Fee components are currently accessed via a key of type string .

As solidity is tuned to operate on 32 bytes data, changing the key type from string to bytes32 would save gas
costs.

The gas savings are even more pronounced on layer-2 rollups that commit calldata to the layer-1 chain, such as
Arbitrum. Here, over 50% of the transaction cost is made up of calldata cost.
Changing from string to bytes32
would additionally reduce the calldata encoding for a fee component key by a factor of 3: from 96 bytes (32 bytes
location + 32 bytes length + 32 bytes data) to only 32 bytes.

14.1 Recommendation

The key type could be changed from string to bytes32 .

Solidity is able to automatically convert short string literals to bytes32 , thus the changes to the current code would be
minimal.

Further, bulkTransfer(...) requires fee components to be specified as an array.

To reduce calldata gas costs, a function overload could be defined, allowing only one fee component to be specified
for a batched transfer transaction.

Optimization

Fixed

mapping(string => FeeComponent) public feeComponents;

mapping(bytes32 => FeeComponent) public feeComponents;

function bulkTransfer(

address[] calldata _from,

address[] calldata _to,

uint256[] calldata _creditAmount,

string calldata _key

) external onlyRole(TRANSFER) {

for (uint256 i = 0; i < _from.length; i++) {

_transfer(_from[i], _to[i], _creditAmount[i], _key);

}

}

15 Disclaimer

Perfect Abstractions LLC receives payment from clients (the “Clients”) for reviewing code and writing these reports
(the “Reports”).

The Reports are not an accusation or endorsement of any project or team, and the Reports do not guarantee the
security of any project. No Report provides any warranty or representation to any Third-Party in any respect, including
regarding the bug-free nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. To remove any doubt, this Report is not investment advice, is not intended to be
relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the
security of the project.

The Reports are created for Clients and published with their consent. The scope of our review is limited to the code or
files that are specified in this report. The Solidity language remains under development and is subject to unknown
risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code that could
present security risks.

